LiDAR - Vehicle environment sensor technology for autonomous driving
Applications for improved quality of life
In autonomous vehicles, the human is only a passenger; the car keeps the lane independently and detects obstacles and dangers. LiDAR sensors are used so that the vehicle can detect its environment. LiDAR (Light Detection and Ranging) enables distance and speed measurement between objects and the vehicle and is based on the emission of laser signals into the environment, the reflection of which is detected and analysed.
For this purpose, Fraunhofer IPMS is developing microscanning mirrors that meet the high requirements of autonomous driving and are small and integrable at the same time. The approach being pursued is that of a "scanning eye", which enables digital vision in three dimensions.
A micromirror scanner module captures the environment by distributing laser radiation in two dimensions. The third dimension in space is determined from the light reflected from the object using various methods such as time-of-flight measurement, coded pulses or the demodulation of FMCW signals. The MEMS mirrors of Fraunhofer IPMS can ensure ambient detection in the range of a few centimetres up to several hundred meters. Due to their low weight and good integrability, the modules are insensitive to vibration despite their mobility and can detect the environment without measurement blur.
The MEMS scanners, made of single-crystalline silicon, are extremely robust and fatigue-free and meet the requirements in terms of optical scanning ranges as well as shock and vibration stability. As such, they meet the reliability requirements of a solid state LiDAR. CMOS-compatible silicon technology also allows for scalable, cost-effective manufacturing of the modules and enables their integration into existing systems. The application of LiDAR technology for a MEMS scanner-based "eye" for vehicles is thus a promising path towards autonomous driving.