Mobility and Work

LiDAR - Vehicle environment sensor technology for autonomous driving

Applications for improved quality of life

In autonomous vehicles, the human is only a passenger; the car keeps the lane independently and detects obstacles and dangers. LiDAR sensors are used so that the vehicle can detect its environment. LiDAR (Light Detection and Ranging) enables distance and speed measurement between objects and the vehicle and is based on the emission of laser signals into the environment, the reflection of which is detected and analysed.

For this purpose, Fraunhofer IPMS is developing microscanning mirrors that meet the high requirements of autonomous driving and are small and integrable at the same time. The approach being pursued is that of a "scanning eye", which enables digital vision in three dimensions.

A micromirror scanner module captures the environment by distributing laser radiation in two dimensions. The third dimension in space is determined from the light reflected from the object using various methods such as time-of-flight measurement, coded pulses or the demodulation of FMCW signals. The MEMS mirrors of Fraunhofer IPMS can ensure ambient detection in the range of a few centimetres up to several hundred meters. Due to their low weight and good integrability, the modules are insensitive to vibration despite their mobility and can detect the environment without measurement blur.

The MEMS scanners, made of single-crystalline silicon, are extremely robust and fatigue-free and meet the requirements in terms of optical scanning ranges as well as shock and vibration stability. As such, they meet the reliability requirements of a solid state LiDAR. CMOS-compatible silicon technology also allows for scalable, cost-effective manufacturing of the modules and enables their integration into existing systems. The application of LiDAR technology for a MEMS scanner-based "eye" for vehicles is thus a promising path towards autonomous driving. 

Car-2-car communication

Applications for improved quality of life

Connected vehicles are fundamental for innovations such as autonomous driving and platooning, i.e. automated driving in columns. Up to now, radio-based methods such as WLAN (IEEE 802.11p) have been used. This technology is well established and allows high data rates. However, such standards also have their weaknesses, such as a narrowly limited frequency range, signals that can be manipulated and electromagnetic compatibility. Alternative transmission paths to complement the systems are therefore in demand.

Li-Fi uses light sources such as LEDs instead of radio waves and modulates them. The emitted signals are then picked up by a photodiode. Real-time Li-Fi technology, with latencies in the microsecond range can be used as a redundant or additional channel to WiFi.


Our services:

  • Li-Fi Workshops
  • Technology Consulting
  • Concept development
  • Hardware and module design
  • Pilot production

Digital workingspace - Data transfer via Li-Fi

Applications for improved quality of life

Our Li-Fi HotSpot is suitable for replacing WiFinetworks and cable connections with a maximum data transfer rate of 1 Gbit/s for transmission over longer distances. Comparable to a WiFi hotspot, individual but also several users can dial into the network simultaneously. Due to the required line-of-sight connection, the LiFi connection offers significantly higher data security than conventional network access.