

Abbildung 1: Krater auf einer HDD-Festplatte nach der Ablation mit einem Femtosekundenlaser (Ti:Saphire Laser, Wellenlänge 720 nm, pulse 100 fs, Repetition rate 1 kHz, 500 Pulsen, Laserintensität 2.6 TW/cm²).

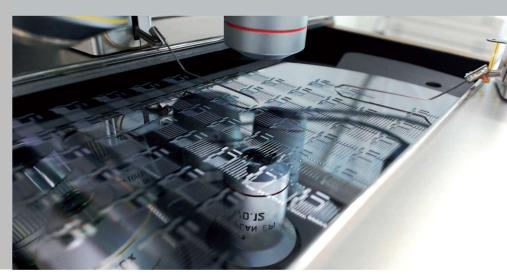


Abbildung 2: Waferkontaktierung mit Mikromanipulatoren

DIGITALES HOLOGRAFISCHES Mikroskop (DHM)

Das DHM erfasst die gesamte Topografieinformation einer mikroskopischen Probe innerhalb einer Einzelbildaufnahme mit einer Höhenauflösung bis zu 0.2nm (ca. zwei Atomlagen). Dies ermöglicht hochpräzise 3D-Darstellungen in Echtzeit. Dank der stroboskopischen Aufnahme können außerdem schnelle Schwingungen nanometergenau erfasst und in 3D abgebildet werden.

Typische Proben sind:

Metalle, Silizium, Gläser (z.B. optische Linsen, Spiegel), Siliziumchips, Wafer, abgeschiedene Schichten auf Substraten, strukturierte Substrate, etc.

Unsere Anforderungen sind:

- Teststrukturen müssen gut reflektierend und sauber sein (keine Splitter bzw. leicht zerfallende Partikel)
- Max. Sample Größe: 300x300x200 mm, 200 mm
- Probenzahl auf F&E-Mengen limitiert, typisch <100
 Stück

Fraunhofer Institute for Photonic Microsystems IPMS

Institutsteil
"Integrated Silicon Systems"
Konrad-Zuse-Str. 1
03046 Cottbus, Germany

Kontakt:

Michael Stolz Telefon: +49 355 69 2483 michael.stolz@ipms.fraunhofer.de

www.ipms-iss.fraunhofer.de

Messgrößen / Messbereiche / Auflösung

Multiwellenlängen Konfiguration	
a. 3xLaser mit Wellenlängen	666 nm, 793 nm, 685 nm
b. Maximal messbare vertikale Stufenhöhe	12 μm
c. Maximal messbare Höhe bis	500 μm
d. vertikale Auflösung bis auf	0,2 nm
Messungen im Vakuum möglich	bis zu 100 mTorr
Kontrollierte Temperatureinstellung durch Peltier-Tisch	-10°C +180°C
Motorisierter XYZ-Probentisch	Stellweg 100x100x38 mm mit 1µm Auflösung
Vibrationsgedämpfter Aufbau	Aktiv kontrolliert

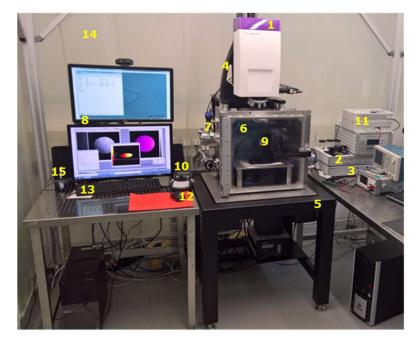
6x Objektivrevolver

- a. 2.5x, 5x, 10x, 20x, 40x, 100x
- b. bis zu 0,1 µm laterale Auflösung
- c. Glass-Korrekturring für Vakuumkammer

Reinraumzelt mit der einstellbaren Luftdurchflutung (nach ISO-Klasse 6)

Stroboskopische Einheit

- a. Für Aufnahme von ultraschnellen Schwingungen
- b. Schwingungen bis zu 25 MHz messbar
- c. Vier 10V-Output und Input Kanäle


20x Verstärker bis zu 200 V

Semi-automatische Samplekontaktierung mit Mikromanipulatoren – MiBots möglich:

- a. vibrationsfreie nanometergenaue Verstellbarkeit
- b. Manipulatoren sind mit verschiedenen Tools ausgerüstet (elektrische DC und AC Nadelprober aus Wolfram, Umlenkspiegel, Mikrogreifer, Mikropipetten)

Koala-Software und MEMSAnalysisTool

- a. Verschiedene statische sowie dynamische Messtools (z.B. Rauhigkeitsmessung, Profilmessung, Stitching Tool (zum Erstellen zusammengefügter Aufnahmen), zeitlicher Phasenmonitor (Höhenänderung in der Zeit), etc.)
- b. Speichern der Hologramme und offline post processing Analyse

- (1) DHM
- (2) Stroboskop- und Steuereinheit
- (3) Verstärker
- (4) Stativ
- (5) Schwingungsgedämpfter Tisch
- (6) Vakuumkammer
- (7) Unterdruckanzeige
- (8) Zwei Bildschirme
- (9) Probentisch
- (10) Joystick für Probentisch
- (11) Steuerung von MiBots
- (12) Maus
- (13) Tastatur
- (14) Staubarmer Raum (Flowbox)
- (15) Joystick für MiBots