MEMS-Spiegel für die Genforschung

Dresden, /

Schneller, programmierbarer Mikrospiegel-Array-Chip für die optische Mikroskopie
Schneller, programmierbarer Mikrospiegel-Array-Chip für die optische Mikroskopie.

Forscher des Fraunhofer-Instituts für Photonische Mikrosysteme IPMS in Dresden haben einen programmierbaren, mikro-elektromechanischen (MEMS-) Chip entwickelt, der Licht unterschiedlichster Wellenlänge ultraschnell und mikrometergenau ablenken kann. Eingesetzt in ein Lichtmikroskop vermag die Technologie parallel mehrere Regionen, die kleiner als eine einzelne Zelle sein können, gezielt zu beleuchten und so spezifische, lichtsensitive Moleküle als Ensemble anzuregen. Unter Verwendung eines zweiten Chips gelingt es außerdem, nicht nur die Regionen genau auszuwählen, sondern auch die Bestrahlungswinkel, unter denen diese beleuchtet werden. Dadurch lassen sich auch verdeckte Objekte, die als Struktur erscheinen, noch präziser hervorheben und die zahlreichen, ungewünschten Umgebungseffekte deutlich reduzieren.

Der einzelne Chip besteht aus einer Matrix von 65536 separaten Mikrospiegeln, die jeder für sich individuell und stufenlos gekippt werden können. Durch eine Steuerung der Auslenkung dieser Spiegel ist es möglich, Einfallswinkel und Intensität des Lichtes mit bis zu 1000 Wechseln pro Sekunde über die gesamte Matrixfläche zu verteilen. Um den Nutzen dieser MEMS-Technologie für den Einsatz in Lichtmikroskopen zu erproben, haben Wissenschaftler des Fraunhofer IPMS sich mit dem Hersteller optischer Systeme IN-VISION Digital Imaging Optics GmbH aus Österreich sowie mit Wissenschaftlern des Institut Pasteur Maladies Infectieuse aus Frankreich zusammengetan. Das Ziel der französischen Konsortialführer ist es, mit dieser Kombination von Optik und Genetik gezielt die Expression von einzelnen Genen in Zellen oder Organen von Zebrafisch-Embryonen und Fruchtfliegenlarven zu beeinflussen. Durch diesen Eingriff ist es möglich, sehr viel präziser als bisher die Wirkung spezifischer Gene auf die Entwicklung von Organismen zu studieren. Das System soll auch genutzt werden, um mittels lichtaktiver Ionen Kanäle in Nervenzellen zu aktivieren und so die Wirkungsweise einzelner neuronaler Netzwerke in Gehirngewebe zu erforschen.

Die Forschungskooperation zwischen Fraunhofer und dem Institut Pasteur wird vom Deutschen Bundesministerium für Bildung und Forschung sowie der Französischen Nationalen Forschungsagentur im Rahmen des Inter Carnot Fraunhofer-Programms unterstützt. Ein erster Systemdemonstrator und neueste Forschungsergebnisse werden nun auf der Fachkonferenz und Ausstellung Photonics Europe in Brüssel vom 15. - 16. April 2014 am gemeinsamen Messestand 224 der Öffentlichkeit präsentiert.

Über das Institut Pasteur, Imagopole (PFID)

The PFID (plateforme d'imagerie dynamique) is a research technology platform (core facility) providing expertise and support in optical imaging methods for researchers at the Institut Pasteur. Our activities include service rendering, training, technology-driven research and technology development. These activities are highly multi-disciplined, and collaborative, with the mission goal focused on the use of quantitative imaging and analysis to understand the processes of cell/tissue-biology, and their usurpation by infection and disease.

The PFID's R&D activities are founded upon the need to develop optical imaging methods that bring new understanding of host-pathogen interactions at the tissue, cellular and molecular levels. In this context, we aim to satisfy the continuous need for novel techniques allowing probing infection, and extrapolating quantitative information on spatiotemporal dynamics in situ. On the other hand we are also interested to push the limits of existing approaches aiming to enhance their performance thereby broadening their experimental utility. The PFID is especially interested in the development of in situ high-content imaging techniques and their application to infection, cell biology, cellular microbiology, and microbiology.